Countable Orthonormal Basis for Hilbert Space

Actually, we have a non-constructive proof.Lemma : Let $mathcalH$ be a Hilbert space. Then it is impossible

that $mathcalH$ has a countable dense subset $D$ and an uncountable

orthonormal set $e_imid iin I$.Proof: Prove by contradiction. Suppose the contrary that $mathcalH$

has a countable dense subset $D$ and an uncountable orthonormal set

$e_imid iin I.$ Let $rfrac14$ and for each $iin I$,

let $B_iB(e_i,r)$, then open ball centered at $e_i$ with

radius $r$. Note that $B_icap B_jemptyset$ whenever $ineq j$.

(For, if there exists $xin B_icap B_j$, then $||e_i-e_j||leq||e_i-x||||x-e_j||e_i$, where the sum is independent

of ordering. (I leave the proof to you)./////////////////////////////////////////////////////////////I expand the last line, state it as a theorem and give a self-contained proof. This is known as the Fourier expansion in Hilbert space.////////////////////////////////////////////////////////////Theorem: Let $mathcalH$ be a Hilbert space (over $mathbbR$

or $mathbbC$) and let $e_imid iin I$ be a maximal (with

respect to $subseteq$) orthonormal set (where the index $I$ may

be uncountable). Then for each $xinmathcalH$, we have $xsum_iin Ilangle x,e_irangle e_i$,

where the series converges in unorder sense (explained in Claim (4)

below).Proof: Claim (1) (Bessel's inequality): For any finite subset $I_1subseteq I$

and any $xinmathcalH$, $sum_iin I_1|langle x,e_irangle|^2leq||x||^2$. Proof of Claim (1): Denote $Pxsum_iin I_1langle x,e_irangle e_i$.

Observe that $Pxbot x-Px$, so $||x||^2||Px||^2||x-Px||^2geq||Px||^2sum_iin I_1|langle x,e_irangle|^2$.Claim (2): For any $xinmathcalH$, $iin Imidlangle x,e_irangleneq0$

is a countable set.Proof of Claim (2): Let $I'iin Imidlangle x,e_irangleneq0$.

Prove by contradiction. Suppose the contrary that $I'$ is uncountable.

For each $ninmathbbN$, let $I_niin Imid|langle x,e_irangle|geqfrac1n$.

Observe that $I'cup_nI_n$, so there exists $n$ such that $I_n$

is uncountable. Choose $k$ such that $frackn^2>||x||^2$.

Choose a finite subset $I'_nsubseteq I_n$ that contains $k$

elements, then $sum_iin I'_n|langle x,e_irangle|^2geqfrackn^2>||x||^2$,

contradicting to claim (1).Claim (3): Given $xinmathcalH$ and let $I_xiin Imidlangle x,e_irangleneq0$.

Fix an enumeration for $I_x$, say $I_xi_1,i_2,ldots$

(finite or infinite), then the series $sum_klangle x,e_i_krangle e_i_k$

is convergent.Proof of Claim (3): If $I_x$ is a finite set, we are done. Suppose

that $I_x$ is a countably infinite set. Let $s_nsum_k1^nlangle x,e_i_krangle e_i_k$.

By Claim (1), for each $n$, $sum_k1^n|langle x,e_i_krangle|^2leq||x||^2$,

so the series $sum_k1^infty|langle x,e_i_krangle|^2$

is convergent. We show that $s_n$ is a Cauchy sequence in $mathcalH$.

Let $varepsilon>0$. Choose $N$ such that $sum_kN^infty|langle x,e_i_krangle|^20$

be arbitrary. Let $U_yB(y,varepsilon)$ be the open ball centered

at $y$ with radius $varepsilon$. Choose $N$ such that $||sum_k1^Nlangle x,e_i_krangle e_i_k-y||leqfracvarepsilon4$.

(If $I_x$ in Claim (3) is a finite set, let $N$ be the number

of elements in $I_x$.) We adopt the notation in Claim (3) and continue

to work with the enumeration $I_xi_1,i_2,ldots$. Let

$I_1i_1,i_2,ldots,i_N$. Clearly $I_1inmathcalC$.

Consider the case that $I_x$ is an infinite set (the finite case

is trivial). By continuity of norm (i.e., the continuity of the map

$xmapsto||x||$), we have


lim_n||sum_k1^Nlangle x,e_i_krangle e_i_k-sum_k1^nlangle x,e_i_krangle e_i_k||||sum_k1^Nlangle x,e_i_krangle e_i_k-y||leqfracvarepsilon4.


On the other hand, for any $n>N$, we have $||sum_k1^Nlangle x,e_i_krangle e_i_k-sum_k1^nlangle x,e_i_krangle e_i_k||^2sum_kN1^n|langle x,e_i_krangle|^2$.

Hence $sum_kN1^infty|langle x,e_i_krangle|^2leqleft(fracvarepsilon4right)^2$.

Let $I_2inmathcalC$ be arbitrary such that $I_1preceq I_2$.



||theta(I_2)-y||leq||sum_k1^Nlangle x,e_i_krangle e_i_k-y||||sum_iin I_2setminus I_1langle x,e_irangle e_i||leqfracvarepsilon4||sum_iin I_2setminus I_1langle x,e_irangle e_i||.


Observe that


||sum_iin I_2setminus I_1langle x,e_irangle e_i||^2sum_iin I_2setminus I_1|langle x,e_irangle|^2leqsum_kN1^infty|langle x,e_i_krangle|^2leqleft(fracvarepsilon4right)^2

$$ because for any $iin I_2setminus I_1$, if $inotini_N1,i_N2,ldots$,

then $langle x,e_irangle0$.Now we have: $||theta(I_2)-y||leqfracvarepsilon2$. This

shows that $sum_iin Ilangle x,e_irangle e_iy$ in unordered

sense.Claim (5): The $y$ defined in Claim (3) and Claim (4) is $x$. That

is $xsum_iin Ilangle x,e_irangle e_i$.Proof of Claim (5): Let $zx-y$. Prove by contradiction. Suppose

the contrary that $zneq0$. We adopt the notation in Claim (3) and

Claim (4). Recall that for each $ainmathcalH$, the map $xmapstolangle x,arangle$

is continuous. Let $iin I$ be arbitrary. Conside the case that $I_x$

is infinite (The finite case is trivial.). We have


langle z,e_iranglelim_nrightarrowinftylangle x-sum_k1^nlangle x,e_i_krangle e_i_k,e_irangle.

$$ If $inotin I_x$, we have $langle x,e_irangle0$ and $langle e_i_k,e_irangle0$

for all $k$, and hence $langle z,e_irangle0$. Suppose that

$iin I_0$, say $ii_k'$ for some $k'inmathbbN$. Then for

any $ngeq k'$, we have


langle x-sum_k1^nlangle x,e_i_krangle e_i_k,e_iranglelangle x,e_irangle-langlesum_k1^nlangle x,e_i_krangle e_i_k,e_iranglelangle x,e_i_k'rangle-langle x,e_i_k'rangle0.

$$ Therefore $langle z,e_irangle0$ in all cases. Define $tildezz/||z||$,

then $e_imid iin Icuptildez$ is an orthonormal set,

containing $e_imid iin I$ as a proper subset. This contradicts

to the maximality of $e_imid iin I$.

If $Dx_n : nin mathbbN$ is a countable set dense in a Hilbert space $mathcalH$, how can I show that Gram-Schmidt algorithm applied to $D$ (or a subset of $D$) produces an orthonormal numerable basis for $mathcalH$?

So far I have been able to prove that every ortonormal basis of $mathcalH$ has to be numerable.

hot searches
CPSR Coconut Charcoal Black Activated Organic Teeth Whitening Activated Charcoal Powder Glory Smile Black And White Toothbrush Set Travel Use Toothbrush With Day And Night Toothpaste Custom logo yellow carton gift box foldable board shipping mailer packaging boxes corrugated box Nanchang Dental Wireless Cold Blue Led Light Lamp Bleaching Gel Pen Rechargeable Teeth Whitening Kit Custom Logo Private Label Led Light Tooth Bleaching Gel Home Teeth Whitening Kit CE approved 100% nature 14 foil bags private label teeth whitening strips home use with box package Lowest Price Portable Cool Blue Mini Home Use Teeth Whitening LED Accelerator Light Tooth Whiten Light Natural Anti Bacterial Biodegradable Bristles Organic Charcoal Bamboo Toothbrush Private Logo Teeth whitening blue led custom Logo teeth whitening light usb smart phone natural ingredient Teeth Whitening Charcoal Bamboo Toothbrush Soft Bristle Dental Care Tooth Brush
hot articles
Cooperation with Japanese pioneer
Tianci acquires HEIDELBERG speedmaster
Shenzhen Tianci printing&packaging CO., LTD Printing&Packaging ltd in Print China 2019
Shenzhen Tianci printing&packaging CO., LTD Printing&Packaging ltd in Print China 2020
Q:What kind of file format should I provide?
Q:Do you have graphic designer that can help us with design?
Q:How long has your company been established?
Q:Can i get a free samples?
How about Tianci independent R&D capabilities?
How about the ODM service flow?
d&g china related articles
How Can I Calculate This Region Area
How to Connect to MySQL on Shared Host?
Difference Between Epimers and Diastereomers
Direct Proof That There Is No Modular Form of Weight $2$ for $SL_2(mathbbZ)$.
Find Wrapping Angle of Helix on a Torus

Copyright © 2020 Coffee bag - Guangzhou tianci packaging industry Co,. Ltd. | Sitemap