Countable Orthonormal Basis for Hilbert Space

Actually, we have a non-constructive proof.Lemma : Let $mathcalH$ be a Hilbert space. Then it is impossible

that $mathcalH$ has a countable dense subset $D$ and an uncountable

orthonormal set $e_imid iin I$.Proof: Prove by contradiction. Suppose the contrary that $mathcalH$

has a countable dense subset $D$ and an uncountable orthonormal set

$e_imid iin I.$ Let $rfrac14$ and for each $iin I$,

let $B_iB(e_i,r)$, then open ball centered at $e_i$ with

radius $r$. Note that $B_icap B_jemptyset$ whenever $ineq j$.

(For, if there exists $xin B_icap B_j$, then $||e_i-e_j||leq||e_i-x||||x-e_j||e_i$, where the sum is independent

of ordering. (I leave the proof to you)./////////////////////////////////////////////////////////////I expand the last line, state it as a theorem and give a self-contained proof. This is known as the Fourier expansion in Hilbert space.////////////////////////////////////////////////////////////Theorem: Let $mathcalH$ be a Hilbert space (over $mathbbR$

or $mathbbC$) and let $e_imid iin I$ be a maximal (with

respect to $subseteq$) orthonormal set (where the index $I$ may

be uncountable). Then for each $xinmathcalH$, we have $xsum_iin Ilangle x,e_irangle e_i$,

where the series converges in unorder sense (explained in Claim (4)

below).Proof: Claim (1) (Bessel's inequality): For any finite subset $I_1subseteq I$

and any $xinmathcalH$, $sum_iin I_1|langle x,e_irangle|^2leq||x||^2$. Proof of Claim (1): Denote $Pxsum_iin I_1langle x,e_irangle e_i$.

Observe that $Pxbot x-Px$, so $||x||^2||Px||^2||x-Px||^2geq||Px||^2sum_iin I_1|langle x,e_irangle|^2$.Claim (2): For any $xinmathcalH$, $iin Imidlangle x,e_irangleneq0$

is a countable set.Proof of Claim (2): Let $I'iin Imidlangle x,e_irangleneq0$.

Prove by contradiction. Suppose the contrary that $I'$ is uncountable.

For each $ninmathbbN$, let $I_niin Imid|langle x,e_irangle|geqfrac1n$.

Observe that $I'cup_nI_n$, so there exists $n$ such that $I_n$

is uncountable. Choose $k$ such that $frackn^2>||x||^2$.

Choose a finite subset $I'_nsubseteq I_n$ that contains $k$

elements, then $sum_iin I'_n|langle x,e_irangle|^2geqfrackn^2>||x||^2$,

contradicting to claim (1).Claim (3): Given $xinmathcalH$ and let $I_xiin Imidlangle x,e_irangleneq0$.

Fix an enumeration for $I_x$, say $I_xi_1,i_2,ldots$

(finite or infinite), then the series $sum_klangle x,e_i_krangle e_i_k$

is convergent.Proof of Claim (3): If $I_x$ is a finite set, we are done. Suppose

that $I_x$ is a countably infinite set. Let $s_nsum_k1^nlangle x,e_i_krangle e_i_k$.

By Claim (1), for each $n$, $sum_k1^n|langle x,e_i_krangle|^2leq||x||^2$,

so the series $sum_k1^infty|langle x,e_i_krangle|^2$

is convergent. We show that $s_n$ is a Cauchy sequence in $mathcalH$.

Let $varepsilon>0$. Choose $N$ such that $sum_kN^infty|langle x,e_i_krangle|^20$

be arbitrary. Let $U_yB(y,varepsilon)$ be the open ball centered

at $y$ with radius $varepsilon$. Choose $N$ such that $||sum_k1^Nlangle x,e_i_krangle e_i_k-y||leqfracvarepsilon4$.

(If $I_x$ in Claim (3) is a finite set, let $N$ be the number

of elements in $I_x$.) We adopt the notation in Claim (3) and continue

to work with the enumeration $I_xi_1,i_2,ldots$. Let

$I_1i_1,i_2,ldots,i_N$. Clearly $I_1inmathcalC$.

Consider the case that $I_x$ is an infinite set (the finite case

is trivial). By continuity of norm (i.e., the continuity of the map

$xmapsto||x||$), we have

$$

lim_n||sum_k1^Nlangle x,e_i_krangle e_i_k-sum_k1^nlangle x,e_i_krangle e_i_k||||sum_k1^Nlangle x,e_i_krangle e_i_k-y||leqfracvarepsilon4.

$$

On the other hand, for any $n>N$, we have $||sum_k1^Nlangle x,e_i_krangle e_i_k-sum_k1^nlangle x,e_i_krangle e_i_k||^2sum_kN1^n|langle x,e_i_krangle|^2$.

Hence $sum_kN1^infty|langle x,e_i_krangle|^2leqleft(fracvarepsilon4right)^2$.

Let $I_2inmathcalC$ be arbitrary such that $I_1preceq I_2$.

Then

$$

||theta(I_2)-y||leq||sum_k1^Nlangle x,e_i_krangle e_i_k-y||||sum_iin I_2setminus I_1langle x,e_irangle e_i||leqfracvarepsilon4||sum_iin I_2setminus I_1langle x,e_irangle e_i||.

$$

Observe that

$$

||sum_iin I_2setminus I_1langle x,e_irangle e_i||^2sum_iin I_2setminus I_1|langle x,e_irangle|^2leqsum_kN1^infty|langle x,e_i_krangle|^2leqleft(fracvarepsilon4right)^2

$$ because for any $iin I_2setminus I_1$, if $inotini_N1,i_N2,ldots$,

then $langle x,e_irangle0$.Now we have: $||theta(I_2)-y||leqfracvarepsilon2$. This

shows that $sum_iin Ilangle x,e_irangle e_iy$ in unordered

sense.Claim (5): The $y$ defined in Claim (3) and Claim (4) is $x$. That

is $xsum_iin Ilangle x,e_irangle e_i$.Proof of Claim (5): Let $zx-y$. Prove by contradiction. Suppose

the contrary that $zneq0$. We adopt the notation in Claim (3) and

Claim (4). Recall that for each $ainmathcalH$, the map $xmapstolangle x,arangle$

is continuous. Let $iin I$ be arbitrary. Conside the case that $I_x$

is infinite (The finite case is trivial.). We have

$$

langle z,e_iranglelim_nrightarrowinftylangle x-sum_k1^nlangle x,e_i_krangle e_i_k,e_irangle.

$$ If $inotin I_x$, we have $langle x,e_irangle0$ and $langle e_i_k,e_irangle0$

for all $k$, and hence $langle z,e_irangle0$. Suppose that

$iin I_0$, say $ii_k'$ for some $k'inmathbbN$. Then for

any $ngeq k'$, we have

$$

langle x-sum_k1^nlangle x,e_i_krangle e_i_k,e_iranglelangle x,e_irangle-langlesum_k1^nlangle x,e_i_krangle e_i_k,e_iranglelangle x,e_i_k'rangle-langle x,e_i_k'rangle0.

$$ Therefore $langle z,e_irangle0$ in all cases. Define $tildezz/||z||$,

then $e_imid iin Icuptildez$ is an orthonormal set,

containing $e_imid iin I$ as a proper subset. This contradicts

to the maximality of $e_imid iin I$.

If $Dx_n : nin mathbbN$ is a countable set dense in a Hilbert space $mathcalH$, how can I show that Gram-Schmidt algorithm applied to $D$ (or a subset of $D$) produces an orthonormal numerable basis for $mathcalH$?

So far I have been able to prove that every ortonormal basis of $mathcalH$ has to be numerable.

hot searches
Hot Products 2020 White Tooth Gel Pen Wireless Led Light Device Dental Care Teeth Whitening Kits Private Logo Handmade paper black magnetic custom cardboard wine box wine gift box for 2 bottle CE Approved Economical Teeth Whitening Kit With Teeth Whitening Gel,Led light, Mouth Tray Anti Snoring Mouthpiece Mouth guard - Food Grade EVA Stop Snore Sleed Aid Hot Amazon Seller - CE Approved Hot Fancy Magnet Box Carton Black Rigid Flat Luxury Magnetic Folding Storage Paper Gift Box With Ribbon CE, GMP Professional Dental Bright Teeth Whitening Black Gel Mint Flavor Charcoal Strips Wholesale Teeth Whitening Kits - iPhone Android USB Private Label LED Light Lamp Home Use Bright Smiles - CE certified 14 Pack Non Peroxide Gel Strips And Dry Strips Dental Care Tooth Whiten Strips For Teeth Whitening custom cardboard children adult jigsaw puzzle 100 150 200 500 1000 pieces Paper Custom Jigsaw Puzzles CPSR Approved Professional Vegan Bright Smile Teeth Whitening Powder Natural White Teeth Powder Cruelty Free
المواد الساخنة
Tianci acquires HEIDELBERG speedmaster
188
Cooperation with Japanese pioneer
176
Shenzhen Tianci printing&packaging CO., LTD Printing&Packaging ltd in Print China 2020
158
Shenzhen Tianci printing&packaging CO., LTD Printing&Packaging ltd in Print China 2019
153
Q:What kind of file format should I provide?
125
Q:How long has your company been established?
115
How about Tianci independent R&D capabilities?
111
Q:Do you have graphic designer that can help us with design?
109
Q:Can i get a free samples?
109
How about the ODM service flow?
109
d&g china related articles
What Are Some Ways to Keep My Hair Really Healthy?
How Was the First Sale of Vivo X60 Series?
Huami Technology Held a Press Conference on August 27, and Amazfit Smart Sports Watch 3 Officially A
Connect to Nonencrypted Wireless Network Using Ubuntu Commands
Is Time Travel Possible? Can We Travel Back in Time?

Copyright © 2020 Coffee bag - Guangzhou tianci packaging industry Co,. Ltd. | Sitemap